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Discovering Orbits: 
Basic Tools 

"Basic Tools" is the first of three workbooks for Discovering Orbits.  

You don't need vectors, matrices or highfalutin math to understand how 

orbiting satellites behave as they do.  All you need is a grasp of the 

Right-Angle Theorem, more commonly known as the theorem of 

Pythagoras. 

Right-Angle Theorem Spacecraft & Gravity-Wells 

Gravitational Center Basic Ellipse 

majA (semi-major axis) minB (semi-minor axis) 

minRAY (minimum radius) maxRAY (maximum radius) 

Max/Min Speed semP (semi-parameter) 

Focus Points hfdC (Half Focus Distance) 

Exp (Eccentricity) TIME (Mean Anomaly) 

POSITION (True Anomaly) midE (Eccentric Anomaly) 

Radius of Orbit Period of Orbit 

Kepler's Equation Elliptic Triangle 

Orbiting Speed SAM (Momentum) 

SME (Energy) Afterthoughts 
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Right-Angle Theorem 

A triangle that has one 90° corner has the following properties.  The 

side opposite the 90° angle is called the hypotenuse, which we'll call 'A' 

for short.  The shorter sides we'll call 'B' & 'C' for short.  Then the A-side, 

multiplied by itself, equals B-side, multiplied by itself, plus C-side 

multiplied by itself. 

Right-Angle Theorem:  A2  =  B2  +  C2 

  

 

Diagrams 1.00 and 1.00A 
  

The right-angle theorem is the basis for trigonometry, since the 

angles of the corners can be matched with specific ratios between any 
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two of the three sides.  The matches are calculated using trigonometric 

functions called sine (SIN), cosine (COS) and tangent (TAN).  Digital 

calculators perform these functions rapidly and accurately.  Before the 

advent of integrated circuits, engineers had to look up the matches in 

multipage tables. 

 

Diagram 1.01 
  

  

Diagram 1.02 
  

NOTE: the positive/negative dispositions of X and Y.  When you use 

the ARCTAN function (y/x), you will know which quadrant the angle 
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should be by checking the signs of X & Y. 

We have introduced a new term (Radius) to mark the hypotenuse or 

A-side of the triangle.  Trigonometric functions are based on the unit 

circle where the radius equals one.  The SIN and COS functions compute 

ratios between zero and one, whereas the TAN function computes ratios 

between zero and infinity. 

If you know the ratio, you can find the angle.  If you know the angle 

you can find the ratio.  Very simple so far, don't you agree? 

Orbital dynamics boils down to the Right-Angle Theorem and its 

trigonometric functions.  From these simple relationships, you can 

observe and analyze an orbiting spacecraft.  You use angles and side 

lengths like calipers to gauge the size and shape of a spacecraft's orbit.  

Moreover, the Right-Angle Theorem lets you calculate distances 

between any two points on a plane.  Positions in the Cartesian 

coordinate system are plotted as an X-lengths and a Y-lengths away 

from the origin (0, 0), where the X-axis (horizontal) and the Y-axis 

(vertical) form a 90° angle.  Hence, the X & Y lengths represent the short 

sides of a 90° triangle. 

  

Diagram 1.03 
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Gravitational Center 

The most common parameters are spacecraft speed and distance 

away from the gravitational center.  The distance away from the 

gravitational center is called the radius of orbit.  Both radius and speed 

often change during the course of an orbit.  If you know the direction of 

speed with respect to the radius line, you can describe the entire orbit, 

including its shape and orientation. 

  

Diagram 1.04 
  

A satellite moves on a flat plane around a gravitational attractor.  

The flightpath of a satellite is called an orbit or orbital path.  Orbits 

represent a balance between satellite speed and the inbound force of 

gravity. 

Newton's 1st-Law of Motion describes inertia: An object at rest 

will remain at rest; an object in motion will remain moving in the 

straight line of its motion. 

A satellite wants to keep moving in a straight line, whereas the force 

of gravity keeps pulling the satellite toward its center.  The two forces 

cause the satellite to follow a curved path around the gravitational 
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attractor. 

Man-made satellites have very small mass compared to the masses 

of planets and major moons, so the mass of a satellite can be ignored in 

lieu of its orbital behavior.  The equations of motion use the 

gravitational parameter of the massive body around which the satellite 

orbits.  Gravitational parameters for the sun and most visible bodies of 

the solar system have been calculated with great precision.  From here 

on, the acronym GP will mean the same thing as gravitational 

parameter. 

GP  =  Gravitational Parameter of earth. 

GP(moon)  =  Gravitational Parameter of the moon. 

GP(sun)  =  Gravitational Parameter of the sun. 
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Spacecraft & Gravity-Wells 

When a spacecraft approaches a massive body, three things may 

happen. 

  

  

• The spacecraft's speed is too small to reach a balance with the 

gravitational attractor, so spacecraft will dive into the massive body 

or burn up in the atmosphere, if any. 

• The spacecraft's speed is too great for the gravitational attractor, so 

the massive body can only deflect the spacecraft's flightpath.  The 

spacecraft may also acquire the orbiting speed and/or redirection of 

the attractor, but its inherent speed with respect to the massive body 

will remain unchanged from inbound to outbound. 

• The speed of the spacecraft finds a balance with the attractor, and 

the spacecraft will be "captured" by the massive body.  As a result, 

the spacecraft will form an orbit around the attractor.  The flightpath 

of a "captured" spacecraft is called an ellipse.  The farther a satellite 

orbits from its attractor, the more potential energy it has.  In effect, it 

occupies a higher niche in its gravity-well. 

NOTE:  When a spacecraft escapes earth's gravity-well and travels to 

another planet, the spacecraft remains in orbit around the sun's gravity-

well. 
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Basic Ellipse 

An ellipse is a stretched out circle.  In the real-world very few orbits 

are perfect circles.  Most orbits are ellipses—or epicycles as the 

ancients called planetary flightpaths.  An epicycle is a graphic artist's 

rendition of an ellipse.  Epicyclic equations are harder to use than 

elliptic equations, so it makes sense to use elliptic parameters. 

 

  

Diagram 1.05 
  

 

Equation 1.01 
  

The X & Y terms are variables.  The mark the satellite's position 

through all phases of its orbit.  The A & B terms are constants for a 

particular orbit. 

To make a class of orbits with the same shape and orbital period, all 

you need is a pair of the basic parameters.  Any combination will let you 

calculate the other parameters from time-tested formulas.  In case you 

were wondering, the period of orbit means how long it takes for a 
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satellite to travel once-around. 

  

Contents. 

Next Page — majA 



<10> 

majA (semi-major axis) 

The major axis is the longest diameter of an ellipse.  Half of the major 

axis is called the semi-major axis—or majA for short.  The majA is 

measured in kiloms. 

  

 

Diagram 1.06 
  

The majA is proportional to the energy of orbit and the orbital 

period.  You can calculate both from the majA if you know the GP 

(gravitational parameter) of the attractor. 

The major axis (the longest diameter) is the sum of the maximum 

radius and the minimum radius, so 

• majA  =  ( maxRAY  +  minRAY )  /  2 

• majA  =  hfdC  /  Exp 

• majA  =  semP /  ( 1  -  Exp * Exp ) 
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minB  (semi-minor axis) 

The minor axis is shortest diameter of an ellipse.  Half of the minor 

axis is called the semi-minor axis—or minB for short.  The minB is 

measured in kiloms. 

 

Diagram 1.07 

 

Equations 1.02 and 1.03 
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minRAY (minimum radius) 

The minRAY marks the closest a satellite comes to its attractor.  The 

minRAY equals the shortest radius length.  Measured in kiloms. 

 

Diagram 1.08 
  

The minRAY marks the start of the orbital cycle.  Here, the POSITION 

Angle equals zero, the TIME Angle equals zero and the midE Angle 

equals zero.  The satellite moves counter-clockwise from the minRAY 

point. 

The satellite travels at top speed during the minRAY crossing. 

• minRAY  =  majA  -  hfdC 

• minRAY  =  majA  *  ( 1  -  Exp ) 
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maxRAY (Maximum radius) 

The maxRAY marks the longest radius of the satellite in elliptic orbit.  

Measured in kiloms. 

 

Diagram 1.09 

  

The maxRAY marks the halfway point of orbit in terms of distance 

and time.  The maxRAY coincides with 180° of the POSITION, midE and 

TIME Angles. 

The satellite travels at the lowest speed during the maxRAY crossing. 

• maxRAY  =  majA  +  hfdC 

• maxRAY  =  majA  *  ( 1  +  Exp ) 

  

Contents. 

Next Page — Max/Min Speed 



<14> 

Max/Min Speed 

Maximum speed occurs at the minRAY and minimum altitude of the 

satellite, whereas minimum speed occurs at the maxRAY and maximum 

altitude of a satellite.  Speed is measured in kiloms per second. 

Minimum altitude of the satellite equals the minRAY minus the semi-

diameter of the attractive body.  Maximum altitude equals the maxRAY 

minus the semi-diameter of the attractive body. 

 

Diagram 1.10 
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semP (semi-parameter) 

The semP represents a vertical line drawn from the gravitational 

center to a point on the orbital path.  Measured in kiloms. 

 

Diagram 1.11 
  

• semP  =  majA  *  ( 1  -  Exp * Exp ) 

  

 

Equations 1.04 and 1.05 
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Focus Points 

Elliptic orbits have two focus points. 

You can make an ellipse with a pencil, a length of string, two thumb 

tacks and a thick sheet of cardboard.  Tie the string to each of thumb 

tacks.  Sink the thumb tacks in the cardboard, but make sure the 

distance between thumb tacks is less than the length of string.  Push the 

business end of the pencil inside the string until it's stretched taut.  And 

then draw an ellipse around the tacks. 

If the length of string is much larger than the distance between the 

tacks, the ellipse will tend toward a circular shape.  If the length of 

string is only slightly greater than the distance between the tacks, the 

ellipse will have a streamlined shape.  The length of string is twice the 

length of the majA, whereas the distance between focus points is twice 

the hfdC.  Hence, the ratio between the hfdC and the majA governs the 

shape of orbital path. 

 

Diagram 1.12 
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The prime focus lies at the gravitational center.  The 2nd-focus lies 

on the major-axis at an equal and opposite distance away from the 

Geometric Center (0, 0).  Focus Points have (hfdC, 0 and -hfdC, 0) 

coordinates. 

The elliptic focus points render a fascinating symmetry.  The 

satellite's current speed is proportional to the ratio of the lines between 

the satellite and either focus point.  Indeed, the current speed is 

proportional to line drawn to the 2nd-focus over the line drawn to the 

prime focus. 

• Speed  ~  (2nd-Focus to orbit) / (Prime focus to orbit) 
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hfdC (half distance between focus points) 

The hfdC extends along the major axis from geometric center to 

either focus point.  The hfdC is measured in kiloms. 

 

Diagram 1.13 
  

• hfdC  =  Exp  *  majA 

• hfdc  =  ( majA — minRAY ) 
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Exp (Expander or Eccentricity) 

The Exp is a ratio between zero and almost one for an ellipse.  Exp 

governs the shape of an ellipse.  The Exp value of one signifies the 

minimum escape speed from a gravitational attractor.  The flightpath is 

parabolic.  The Exp value greater than one implies a hyperbolic 

flightpath.  The Exp has no units.  Below you will see the orbits 

becoming stretched out as the Exp ratio goes from zero to nearly one. 

 

Diagram 1.14 
  

• Exp  =  hfdC  /  majA 

 

Equations 1.06 and 1.07 
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TIME Angle (Mean Anomaly) 

The TIME Angle measures orbital time in degrees of a circle.  360° 

equals the duration of one full orbit.  A Low-Earth Orbit (LEO) takes 

about 1½ hours, so in this case four degrees of the TIME Angle equals 

one minute of time.  A geosynchronous (GEO) orbit takes about 24 

hours for one-orbital period, so four minutes of time equals one-degree 

of the TIME Angle.  The earth takes one year to complete its orbit 

around the sun, so one day-length equals about one degree of the TIME 

angle. 

 

Diagram 1.15 
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POSITION (POS) Angle (True Anomaly) 

The POSITION Angle is the angular sweep of the satellite's current 

radius as measured from the minRAY point. 

 

Diagram 1.16 
  

You can determine POSITION Angle if you know the satellite's 

position in space via an accurate observation. 

 

Diagram 1.16 
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The ARCOSINE function is the inverse of the COSINE.  It works like a 

watch that gives time in a.m. or p.m.  Worse, the ARCOSINE doesn't 

distinguish between morning and afternoon., so you have to decide 

whether the satellite moves in the 1st-half or 2nd-half of its orbital trek.  

If it's in the 2nd-half, then subtract the angle from 360°.  If your 

calculator is set to angular radians, then subtract your answer from 2. 

Equation (1.16) needs accurate positional values for X, Y and radius, 

and these may not be available.  In which case, the POSITION angle can 

be found directly from the midE Angle. 

 

Equation 1.09 
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midE Angle (Eccentric Anomaly) 

The midE Angle describes a circle with a radius equal to the majA.  It 

is measured from the minRAY and moves counter-clockwise around the 

Geometric Center of orbit.  you get the (x,y) positions on the midE circle 

as follows: 

• X  =  majA  *  COS(midE) 

• Y  =  majA  *  SIN(midE) 

 

Diagram 1.17 
  

The drop lines represent the displacements you get if use the midE 

angle to describe positions on the orbital path.  You get (x,y) positions 

as follows: 

• X  =  majA  *  COS(midE) 

• Y  =  minB  *  SIN(midE) 

  

The midE Angle represents the midway angle between the TIME 

Angle and the POSITION Angle.  When you arrange a rendezvous 

between to orbiting satellites, it is important to predict the positions of 

orbit and the times they will occur.  In other words, the rendezvous has 

to occur at the same time and same place.  The midE is the go-between 

the TIME Angle and POSITION Angle.  If you know one, you can use the 
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midE Angle to find the other.  First, the midE Angle relates to the TIME 

Angle through Kepler's Equation, which will be covered in later pages.  

Second, the midE Angle relates to the POSITION Angle, using the 

equations below: 

 

Equations 1.10 and 1.11 
  

The ARCOSINE function is the inverse of the COSINE.  It works like a 

watch that gives time in a.m. or p.m.  Worse, the ARCOSINE doesn't 

distinguish between a.m. or p.m., so you have to decide whether the 

satellite should be in the 1st-half or 2nd-half of the orbital trek.  If it's in 

the 2nd-half, then subtract the angle from 360°.  If your calculator is set 

to angular radians, then subtract your answer from 2. 
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Radius of Orbit 

The radius describes a straight line from the Gravitational Center to 

the current position of the satellite.  Measured in kiloms. 

 

Diagram 1.18 
  

 

Equations 1.12 and 1.13 
  

The radius can also be found from (x,y,z) coordinates in space.  

Because orbital flightpaths stay on the same flat plane, the 3rd-

dimension can be ignored unless you want a visual sighting of a 

particular orbit.  Discovering Orbits is only concerned with examining 

the behavior of satellites in a general sense.  The equations and 

parameters will let you make a class of orbits, all of which follow the 
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same codes of conduct. 

If you want to narrow the class of orbits to a special case, you must 

specify the minRAY and three orbiting angles with literal times, 

sightlines and locations.  Any good astronomy textbook will show you 

how to do this. 

In essence, it makes no difference whether you have a satellite 

crossing its minRAY at 10:00 p.m. or at 11:45 p.m., whether you're 

looking toward the zenith or nadir.  The satellite will still move along its 

orbit in the same fashion. 

Thus, we can safely ignore distractions in the z-direction, which runs 

perpendicular to the (x,y) plane of orbit.  The radius of earth is about 

6,378.15 kiloms.  If ranging-finding radar determines your satellite is 

300 kiloms above the surface, the effective radius is 6378.15 + 300 = 

6678.15 kiloms.  The X and Y distances for the satellite are measured 

from the gravitational center. 

 

Equation 1.14 
  

• POSITION Angle  =  ARCTAN(Y/X) 

You determine the POSITION Angle's quadrant from plus-minus 

signs.  If Y and X are positive, POSITION lies in the 1st-quadrant.  If Y is 

positive and X is negative, POSITION lies in the 2nd-quadrant.  If Y and X 

are negative, POSITION lies in the 3rd-quadrant.  If Y is negative and X is 

positive, POSITION lies in the 4th-quadrant. 

Satellite in terms of polar coordinates: 

• (Radius, POSITION Angle) 
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Period of Orbit 

Period refers to the time elapsed during one full orbit.  Period is 

measured in seconds of clock time. 

 

Equation 1.15 
  

If you want to convert the seconds of clock time to seconds of the 

TIME Angle's arc, multiply by 15. 
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Kepler's Equation 

Kepler's Equation links the TIME Angle with the midE Angle.  The 

equation relies on Kepler's 2nd-Law of elliptic motion which states the 

satellite's radius migrates across equal areas in equal times. 

 

Diagram 1.19 
  

The satellite takes as much time going through the yellow area as the 

red area.  Next inscribe an ellipse inside a circle. 

 

Diagram 1.20 
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Using the ratio minB/majA, we can relate areas of the ellipse to the 

mirrored areas in the blue circle.  Moreover, the proportionate area 

swept by the radius equals the same proportionate time.  All that 

remains is to select point 'E' on the orbital path that lies an arbitrary 

distance from the minRAY. 

 

Diagram 1.21 
  

Point 'E' on the ellipse relates to point 'P' on the outlying circle, since 

the angle M-C-P is the midE angle.  To find the 'yellow' area in terms of 

midE Angle, you solve the following: 

• TIME / 2   ~>   area MFE (ellipse)  ~>  area MCP (circle) 

• MCP  =  ½ * majA2 * midE 

• Area MAE  =  (minB / majA) * Area MAP 

Then subtracting the gray (red) triangle...   

• MAP  =  ½majA2 * midE  -  ½majA * Exp * majA * SIN(midE) 

 

Equations 1.16  and 1.17 
  

Kepler's Equation easily solves for the TIME Angle when you know 
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the midE Angle.  But what happens if you know the TIME angle and you 

wish to find the midE Angle? 

• midE  =  TIME  +  Exp * SIN(midE) 

Because the midE Angle appears on both sides of the equation, you 

have to make a smart guess.  From the look of Kepler's equation, you 

can expect the TIME Angle to lag behind the midE angle during the 1st-

half of the orbit.  The midE Angle will lag behind the TIME Angle during 

the 2nd-half.  Solve the equation over and over until the left side of the 

equation converges to the proposed value on the right side. 

Let's say we start with midE0 as your guess.  Then... 

• midE1  =  TIME  + Exp * SIN(midE0) 

Then repeat using midE1 as your new guesstimate. 

• midE2  =  TIME  +  Exp * SIN(midE1) 

And repeat until the midEn and midEn-1 are nearly the same. 

NOTE: Kepler's Equation only works for radian-mode angles where 

the unit circle has a radius of one and circumference of 2. 
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Elliptic Triangle 

So far, every elliptic equation hinges on the Right-Angle Theorem.  

There is a very important triangle that occurs when satellite crosses 

either of two points that form a straight line with the Geometric Center. 

 

Diagram 1.22 
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Orbiting Speed 

Outer space lends very little hindrance to the motion of a satellite.  

There is almost no atmosphere 200 kiloms above earth's surface, so no 

friction to hold the spacecraft back.  In essence, a satellite exists in a 

perpetual-motion system.  The energy of orbit remains constant.  The 

Specific Angular Momentum (SAM) remains constant.  And the Specific 

Mechanical Energy (SME) remains constant.  Nonetheless, you will 

observe satellites moving at different speeds throughout their orbits.  At 

times, they display more kinetic energy; at other times they assume 

more potential energy. 

You might suppose a spacecraft's speed is inversely proportional to 

the current length of its radius.  However, this simple relationship 

doesn't always work.  Elliptic speed has direction as well as magnitude 

because it is the combination of two speeds that act at 90° to each other.  

First, we have the Dynamic Circular Speed (DCS), which is the speed 

arrow associated with a circular orbit.  Second, we have the Dynamic 

Stretch Speed (DSS), which causes the circular flightpath to stretch. 

The DCS lies tangent to an imaginary circle whose radius is the 

gravitational center.  The DCS arrow starts at the current position of the 

spacecraft and points in the direction of motion.  The DSS lies along the 

spacecraft's radius.  It points away from the gravitational center 

between zero and 180° of the orbit.  And it points toward the 

gravitation center between 180° and 360° of the orbit. 

Arrows of DCS and DSS form a 90° corner, so you rely once again on 

the Right-Angle Theorem to find the speed in kiloms per second. 

 

Equation 1.18 
  

In essence, you obtain speed for any point in the flightpath if you 

know the DCS and DSS, either of which change dynamically during the 

course of an orbit.  In many ways, the DCS and DSS are tougher to find 

than the speed itself.  So back to square one. 

Lets examine the partial speeds further.  DCS first: 



<33> 

 

Diagram 1.23 
 

  

Diagram 1.24 
  

The diagrams agree with trends seen in the behaviors of satellites, 

but the pictures don't bring us closer to determining instantaneous 

values for the DCS and DSS. 
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Fortunately you may calculate the Flightpath Angle if you know the 

Exp and either the current midE or POSITION. 

  

Equations 1.19 and 1.20 
  

The Flightpath Angle lies between the Speed Arrow (tangent to the 

Flightpath) and the DCS Arrow. 

 

Diagram 1.25 
 

Both DCS and DSS are measured in kiloms per second.  Once you 

know the Flightpath Angle (FPA), they are easily calculated as follows: 

• DCS  =  Speed * COSINE(Flightpath Angle) 

• DSS  =  Speed * SINE(Flightpath Angle) 
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SAM (Specific Angular Momentum) 

You may think of the SAM as a constant of motion for a class of orbits 

where each has an identical flightpath.  SAM is measured in kiloms-

squared per second. 

 

Diagram 1.21 
  

Speed changes, the Radius length changes and the FPA Angle 

changes during the course of an orbit, but together they combine to 

form a constant angular momentum. 

Orbital mechanics define SAM as an arrow 90° to the plane of orbit.  

If you make a fist with your right hand and extend your thumb, the curl 

of fingers show the counterclockwise motion of the spacecraft, while 

the thumb points out the SAM arrow. 
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SME (Specific Mechanical Energy) 

Energy of orbit is the result of an indefinite integral.  In other words, 

orbital energy is the sum of all possible speeds and radius lengths that 

occur after once-around the flightpath.  Orbital mechanics normally 

ignore the constant of integration, so SME is expressed as a negative 

value of all "captured" spacecraft in elliptic orbits.  The higher up the 

gravity-well that a spacecraft flies, the smaller negative value of SME, 

which reduces to zero if the spacecraft achieves escape speed and 

becomes positive if the spacecraft exits on a hyperbolic trajectory. 

Elliptic orbits with the same majA will have the same SME, as you 

might suspect from the following energy equations. 

 

Equations 1.22 and 1.23 
  

The larger the majA, the greater the energy, even though satellites 

that loft to higher altitudes travel at slower speeds.  The higher up the 

gravity-well, the more potential energy a spacecraft has.  This more 

than makes up for the slower speeds. 

The SME is measured in kiloms-squared /over/ seconds-squared. 

  

Contents. 

Next Page — Afterthoughts 



<38> 

Afterthoughts 

Here you have the Basic Tools for Discovering Orbits.  The equations 

are not only useful for solving problems of orbital dynamics; you may 

use them to calculate distance and trip times for bicycles, roadsters or 

jumbo jets.  You can use them to determine the acreage of odd-shape 

property lots.  Download the PDF source file.  I only ask that you credit 

my efforts in preparing this handy reference.  Likewise, if you notice any 

gross errors or omissions, please contact me at 

<psignoman@uniserve.com> 

I certainly don't wish to dole out bad info and send others on wild-

goose chases. 

Installments two and three of Discovering Orbits will show you how 

to apply these Basic Tools for orbits around earth and moon.  You will 

learn how to rendezvous two spacecraft, how to transfer orbits from 

LEO to GEO, how to go from earth to moon, how to arrive at the moon 

with the right speed to be "captured" in its gravity-well, and so on... 
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"Woke: Cool Assassins 1" @ Amazon 

 

https://www.amazon.com/gp/product/B0BMW7DQC8. 
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